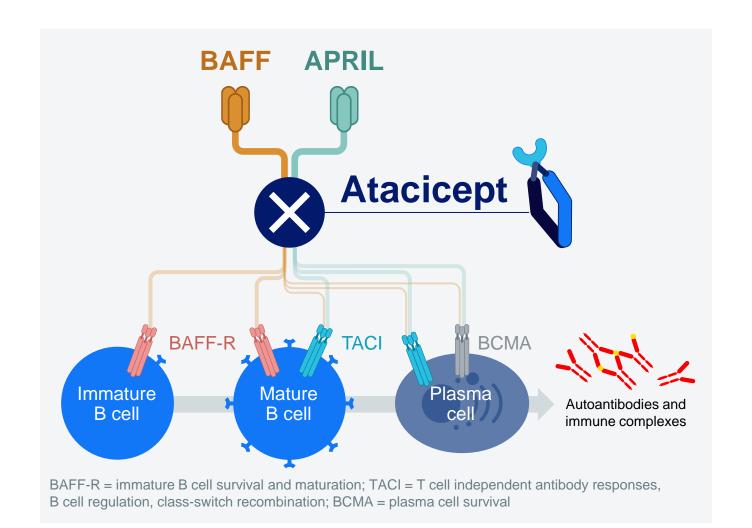


Atacicept in IgAN: Continued Protective Titers to Diphtheria and Tetanus and Balanced Infections vs Placebo with a Focus on COVID-19


Jonathan Barratt¹, Bart D. Maes², Rubeen K. Israni³, Xuelian Wei³, Vladimir Tesar⁴, Gerald B. Appel⁵, Yusuke Suzuki⁶, Celia J.F. Lin³, Richard A. Lafayette⁷

¹University of Leicester, Leicester, Leicester, UK; ²AZ Delta vzw, Roeselare, West-Vlaanderen, Belgium; ³Vera Therapeutics, Inc., Brisbane, CA, USA; ⁴University, New York, NY, USA; ⁶Juntendo Daigaku, Bunkyo-ku, Tokyo, Japan; ⁷Stanford University, Stanford, CA, USA

Introduction

- IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, with up to 50% of patients progressing to ESRD or death within 20 years^{1,2}
- B-cell Activating Factor (BAFF) and A PRoliferation-Inducing Ligand (APRIL) play an important role in the maturation, differentiation, and effector function of B cells and plasma cells

Atacicept: BAFF/APRIL Dual Inhibitor With Disease-Modifying Potential

- Fully humanized TACI-Ig fusion protein, subcutaneously administered
- Low nanomolar potency vs BAFF (Kd 1.45 nM) and APRIL (Kd 0.672 nM)
- Reduces overstimulation of B cells and plasma cells³ and autoantibody production⁴
- Dual inhibition more potent than either alone,⁵ may translate to more sustained B cell modulation
- Atacicept, a dual BAFF/APRIL inhibitor, has been shown to reduce circulating levels of galactose-deficient IgA1 (Gd-IgA1),⁶ anti-Gd-IgA1,⁷ and immune complexes,⁸ which are central to IgAN pathogenesis⁹⁻¹⁴

Atacicept Safety Tolerability Profile in >1000 Patients from Prior Trial Experience in Non-IgAN Indications: Integrated Safety Analysis¹⁵

AEs >5% in Any Arm, by Dose in the Double-Blind Placebo-Controlled Set

Participants, %	Overall n=1568	Atacicept 25 mg n=129	Atacicept 75 mg n=384	Atacicept 150 mg n=572	Placebo n=483
Discontinuation due to AE	8	11	8	8	6
Serious AE	11	12	13	11	11
Severe AE	9	8	12	10	6
Infections	46	33	47	49	44
Serious infections	4	1	6	4	4
Hypersensitivity	9	6	10	10	8
Injection site reactions	22	21	28	27	11
Cardiac arrhythmias	5	9	6	4	4
Vestibular disorders	4	4	5	5	4
A.E					

- A total of >1000 patients have received ≥1 dose of atacicept across different indications including two large systemic lupus erythematosus studies and a longterm extension study (as of April 2023)
- Exposure-adjusted incidence rates of serious infection and serious AE were similar between atacicept and placebo
- No association between risk of infection and magnitude of pharmacodynamic effects with atacicept
- Since the integrated analysis, atacicept has been evaluated for the treatment of IgAN in two clinical trials:

Phase 2a JANUS Study Design

Phase 2b ORIGIN Study Design

Objective

 Better understanding vaccine response and immunity with atacicept, especially to COVID-19, may help assess atacicept's benefit risk profile, especially in an IgAN population

Methods

- In the Phase 2a JANUS study, tetanus and diphtheria titers were measured at day 1, week 48 and week 72 in addition to safety assessments
- In the Phase 2b ORIGIN study, safety data on infections including AEs of COVID-19 as reported by the investigators were analyzed by treatment arm up to week 36

Results

Protective Titers to Diphtheria and Tetanus

- No JANUS participants changed from protective to nonprotective status for diphtheria toxoid or tetanus toxoid
- Titer ≥0.1 IU/mL required to maintain immunity for both diphtheria toxoid and tetanus toxoid

Proportion of Participants Maintaining Immunity from Baseline through Week 72

	Atacicept 25 mg ^a n=6	Atacicept 75 mgb n=5	Placebo ^c n=5
Infections overall, n (%)	5 (83)	1 (20)	2 (40)
Vaccines, n/n (%)			
Diphtheria toxoid (DT)	5/5 (100)	5/5 (100)	4/4 (100)
Tetanus toxoid (TT)	5/5 (100)	4/4 (100)	4/4 (100)

a. One participant on atacicept 25 mg had diphtheria toxoid and tetanus toxoid titers ≥0.1 IU/mL at baseline but no post-baseline measures.
b. One participant on atacicept 75 mg had a tetanus toxoid titer ≥0.1 IU/mL at week 72 but no baseline measure.
c. One participant on placebo had diphtheria toxoid and tetanus toxoid titers <0.1 IU/mL at baseline that increased >0.1 IU/mL during treatment.

Balanced COVID-19 Infections vs Placebo

Summary of COVID-19 Infections Through Week 36

n (%)	Atacicept 25 mg n=16	Atacicept 75 mg n=33	Atacicept 150 mg n=33	Placebo n=34
Infections overall	6 (38)	16 (48)	12 (36)	11 (32)
COVID-19 infections	4 (25)	9 (27)	8 (24)	6 (18)
COVID-19 vaccine prior to infection	4 (100)	9 (100)	8 (100)	6 (100)
Severity				
Mild	3 (75)	8 (89)	7 (88)	6 (100)
Moderate	1 (25)	1 (11)	1 (13)	0
Severe	0	0	0	0
Outcome				
Recovered	4 (100)	9 (100)	7 (88)	6 (100)
Recovering	0	0	1 (12)	0
Action taken				
No dose change	2 (50)	4 (44)	5 (63)	3 (50)
Drug interrupted	2 (50)	5 (56)	3 (38)	3 (50)
Duration of COVID-19 infection, daysa	11.5 (8.5, 14)	8 (7, 9)	8 (6, 8)	6.5 (6, 7)

a. Duration of AE reported as median and interquartile range in days for 26 out of 27 participants who had outcome of AE as recovered/resolved.

- ORIGIN participants across atacicept and placebo arms had similar rates of overall and COVID-19 infections
- All participants with COVID-19 infection as an AE had ≥1 COVID-19 vaccine dose prior to infection
- No COVID-19 infection was serious; most were mild in severity
- Median duration of COVID-19 infection was 7.5 (IQR 7, 9) days
- There were no permanent discontinuations due to COVID-19 infections
- No COVID-19 infection was reported as study drug related

Conclusions

- As in prior experience, infections were balanced between atacicept and placebo in the Phase 2a JANUS and Phase 2b ORIGIN studies
- Atacicept treatment was associated with continued protective immunity to diphtheria and tetanus in the JANUS study
- There was no increase in incidence or severity of COVID-19 infections in the ORIGIN study

References: 1. Lai KN, et al. Nat Rev Dis Primers 2016;2:16001; 2. Pitcher D, et al. Clin J Am Soc Nephrol 2023;18:727-38; 3. Hiepe F, et al. Arthritis Rheumatol 2017;69:122-30; 5. Haselmayer P, et al. Eur J Immunol 2017;47:1075-85; 6. Lafayette R, et al. ERA 2023, late breaking clinical trial oral presentation, June 17 2023; 7. Barratt J, et al. Nephrol Dial Transplant 2022;3 suppl 3, abstr FC051; 8. Barratt J, et al. ASN Kidney Week 2022, abstr SA-PO655; 9. Wyatt RJ, Julian BA. N Engl J Med 2013;368:2402-14; 10. Czerkinsky C, et al. J Clin Invest 1986;77:1931-8; 11. Suzuki H, et al. J Clin Invest 2009;119:1668-77; 12. MacPherson AJ, et al. Mucosal Immunol 2008;1:11-22; 13. Zhao N et al. Kidney Int 2012;82:790-6; 14. Zhai YL, et al. 2016;95:e3099; 15. Gordon C, et al. Rheumatol Adv Pract 2019;0:1-12.

Acknowledgments: We thank all the participants who participated in this study and their families.

8000 Marina Boulevard, Suite 120, Brisbane, CA 94005. (650) 770-0077. medinfo@veratx.com. © 2023 Vera Therapeutics, Inc. All rights reserved

